понедельник — с 12:00 до 19:00;
вторник-пятница — с 10:00 до 19:00;
суббота — с 11:00 до 18:00
понедельник — с 12:00 до 19:00;
вторник-пятница — с 10:00 до 19:00;
суббота — с 11:00 до 18:00
Книга, адресованная студентам физико-математических специальностей, написана на основе лекций, прочитанных авторами в Независимом московском университете.
В первой части изложены основы теории алгебраических кривых, рассматриваемых как римановы поверхности. Здесь преобладают сравнительно элементарные алгебраические и геометрические методы. Обсуждаются связи алгебраических кривых с теорией Галуа. Впервые на русском языке приводятся теоремы Ритта о композициях многочленов и о коммутирующих многочленах.
Во второй части книги исходной является трактовка римановой поверхности как комплексного одномерного многообразия. Изложены теоремы о топологической, голоморфной и гиперболической униформизации, метод Пуанкаре построения непостоянных мероморфных функций, большая теорема Понселе.
Общие понятия и результаты иллюстрируются многочисленными примерами и задачами.