Прогулки по замкнутым поверхностям
Автор: | |
Название: | Прогулки по замкнутым поверхностям |
Издание: | 2-е исправленное |
Издательство: | МЦНМО | ISBN: | 978-5-94057-803-1 |
Год издания: | 2012 | Тираж: | 2000 экз. |
Количество страниц: | 32 стр. | Формат: | 145x240x2 |
Изучение замкнутых поверхностей началось в XVIII веке с теоремы Эйлера для всякого выпуклого многогранника. Но для невыпуклых многогранников эйлерова характеристика может принимать совсем другие значения. Приняв ее значение за численную характеристику поверхности, мы получаем её первый топологический инвариант: он позволяет доказать, например, что тор не эквивалентен кренделю. Но различить таким образом тор и бутылку Клейна не удаётся: нужен другой инвариант, выражающий ориентируемость поверхности. В конце XIX века Пуанкаре навёл алгебраический порядок среди всех замкнутых поверхностей. Одновременно Хивуд связал эйлерову характеристику с наименьшим числом цветов, необходимых для раскраски любой карты на данной поверхности. В XX веке геометры стали изучать поверхности с новой точки зрения: какие из них являются границами неких тел, и какие из них можно изобразить в пространстве без самопересечений. Пути решения этих проблем рассмотрены в брошюре.
Брошюра рассчитана на широкий круг читателей: школьников, студентов, учителей.
1-е изд.—2003 год.