Прогулки по замкнутым поверхностям


Автор:
Название:
Прогулки по замкнутым поверхностям
Издательство:
МЦНМО
ISBN:
5-94057-120-4
Год издания:
2003
Тираж:
3000 экз.
Количество страниц:
28 стр.

Изучение замкнутых поверхностей началось в XVIII веке с теоремы Эйлера: В–Р+Г=2 для всякого выпуклого многогранника. Но для невыпуклых многогранников выражение X=В–Р+Г может принимать совсем другие значения. Приняв значение X за численную характеристику поверхности, мы получаем её первый топологический инвариант: он позволяет доказать, например, что тор не эквивалентен кренделю. Но различить таким образом тор и бутылку Клейна не удаётся: нужен другой инвариант, выражающий ориентируемость поверхности. В конце XIX века Пуанкаре навёл алгебраический порядок среди всех замкнутых поверхностей. Одновременно Хивуд связал эйлерову характеристику X с наименьшим числом цветов, необходимых для раскраски любой карты на данной поверхности. В XX веке геометры стали изучать поверхности с новой точки зрения: какие из них являются границами неких тел, и какие из них можно изобразить в пространстве без самопересечений. Пути решения этих проблем рассмотрены в брошюре.

Брошюра рассчитана на широкий круг читателей: школьников, студентов, учителей.