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A Lady, young and fair, to marry feels inclined;
No harm in that, I find;

The mischief is, she’s so particular;
He must be talented, a man of spotless truth,
Distinguished and well-born, and in the prime of youth;
(You’ll own that her demands go rather far);

He must be everything; and where’s the man that is?
Then please to notice this!

He must be true to her, but not the slightest jealous.
Exacting! Still she shows so fair among her fellows

That suitors of the choicest sort
Drive daily to her door to pay her court;

But when she has to choose, she’s squeamish as can be.
Some maids, with such a pick, would think themselves in

clover,
But she— just looks them over:

‘No suitor there will suit for me;
You never could expect so poor a lot would pass!—
One lacking in distinction, one in class,

And one, who has them both— poor boy, he’s got no
money;

Another’s nose is squat, another’s eyebrows funny.’
One’s that, and one’s not this;

In short, there’s none of them will suit my dainty miss.

Ivan Krylov. The Dainty Spinster

This brochure is about a problem which, on the one hand,
is elementary enough to be told from beginning to end, and,
on the other hand, was thought up not in the nineteenth
century or earlier but in the quite foreseeable past, in the
twentieth century. Moreover, it gave rise to a new branch of
probability theory or even applied probability theory, which
is called the theory of optimal stopping of random processes.
The history of this problem is as follows. It was coined in
1960 by Martin Gardner, the author of a great many books
with fascinating problems and puzzles related to mathemat-
ics. He can be called a populariser of mathematics. It turned
out that this problem had not been considered in probability
theory at that time. In 1963 it was solved by Evgeny Boriso-
vich Dynkin, a mathematician of great repute, who was also
a famous organiser of evening mathematical circles and then
mathematics classes at a Moscow school named today “Lyceum
‘Vtoraya Shkola’”. I will discuss directly the problem that
Dynkin had solved, since this is the simplest variant of the
setting, but his solution method is designed only for this
problem and does not work in simple generalisations. In 1966,
under the influence of Dynkin’s advice, I took up this problem
and found a solution in a rather general form. Later, a very
famous person in contemporary Russia, whose name is Boris
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Berezovsky, was involved with this problem. Berezovsky is
known as a businessman and politician, but he was formerly
a mathematician and defended his doctoral thesis on issues
related to generalisations of this problem.
Now I will describe the problem itself, exactly as Gardner

formulated it. This is a problem about a fastidious bride.*
Imagine that once upon a time there lived a princess who
decided that it was time for her to find a husband. Princes
and kinglets from all over the world were called together, and
1,000 contenders came. For any two she had ever seen, the
princess can say which one of them is better. We assume
that the princes, as mathematicians say, form an ordered set:
if Prince Charming is better than Prince Eric, and Prince
Eric is better than Prince Phillip, then Prince Charming is
better than Prince Phillip. The candidates enter the princess’s
room one by one in an order determined at random; i.e., the
probability of some prince being the first, or the five hun-
dredth, or the thousandth is exactly the same. The princess,
of course, knowing how to compare them, can judge that,
for example, the thirtieth is the tenth in quality, i.e., nine
of the previous ones were better and the rest were worse,
and so on. The aim of the princess is to get the very best
suitor, i.e., she would not be satisfied with even the second
one. At each step, i.e., after meeting each of the princes, she
decides whether she takes him as her husband. If she does,
then the examination of the candidates ends and they all go
home. If the princess refuses him, the prince, being rejected,
immediately goes home, because all princes and kinglets are
people of pride. In this case showing the pretenders contin-
ues. If the princess does not finally get the very best, she
is considered to have lost, she will not marry at all, and will
cloister herself in a convent (the idea of a convent is mine,
Gardner did not mention it). The question is, how should
the princess act in order to get the best candidate with the
highest probability.
The solution of the problem is based on a simple principle,

which has a big name “dynamic programming”. In fact, this
is merely planning, solving the problem from the end. Now
I will explain what it means. Suppose that the princess has
skipped 999 candidates and now meets the last one. Then she
has no alternative, everything is quite clear. If the last one
is the best, then the princess has won and achieved her goal;

* It is also known as the marriage problem, the sultan’s dowry problem,
the fussy suitor problem, the googol game, and the best choice problem.
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if he is not the best, then the princess has lost and retires
to a convent. In either case it is pointless to reject the last
contender, this definitely will not lead to win. Now suppose
that the princess knows how to behave at the 601st step. Let
us try to work out what she should do when she meets the
600th, i.e., one step before. It is clear that if the 600th
candidate is not better than all the previous ones, then there
is nothing to think about, he should be refused. In general,
in our problem the princess will stop only at those who are
better than all the previous ones; otherwise she will definitely
lose, because she is satisfied with the best one only. If he
is really better than all the previous ones, then the princess
has a choice. For example, when the first one comes, then,
of course, he is better than all the previous ones, because
there were no previous ones; but it is very strange to stop
on him, there is little chance to win. Equally well she can
stop on the tenth; it is better to wait a little longer, maybe
someone better will appear. So, suppose the 600th is better
than all the previous ones, and the princess needs to estimate
(perhaps she cannot, but that’s what mathematicians are for)
what is better: to choose this 600th, or to refuse him and
pass to the next one, and there, as we remember, everything
is already known, it is clear how to act, and we can calculate
her chances of getting the best husband.
So, to start with, let us agree that we denote 1000 by n,

i.e., we will solve the problem for an arbitrary number of
candidates. Now, let the princess be at step t (this is the
number of a step, i.e., a positive integer). The first thing
she needs to know is the probability of winning if she makes
her choice at time t provided that the t-th candidate is better
than all the previous ones, i.e., the probability that he is
not only better than all the previous ones but also better
than all of the candidates altogether. Let us denote this
probability by gt. Besides, we need to know one more quantity,
the probability that she will eventually get the best husband
provided that she skips the first t suitors and then uses the
optimal strategy (here we assume that the princess knows how
to behave optimally starting from step t+1; this is precisely
the principle used in dynamic programming). Denote this
probability by ht. If we know these two quantities for any t,
we can easily understand the optimal strategy for the princess:
if the candidate at step t is not better than all the previous
ones, then, of course, he should be rejected, but if he is
really the best among the first t candidates, then we have to
compare gt and ht. If gt is greater than ht, then we should
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t n−3 n−2 n−1 n

Fig. 1.

stop at candidate t, and if ht is greater than gt, we should
reject him and pass to the next one; such a strategy directly
follows from the definition of these probabilities. What shall
we do in the case of equality? Clearly, it does not matter,
since the probability of winning in each case is the same.
Therefore, let us agree for definiteness that in the case of
equality of gt and ht the princess will, say, always stop at the
current challenger.
The strategy is clear; the only thing that remains is to

calculate gt and ht. Right now I will explicitly calculate gt;
however, I will not calculate h

t
yet, I will only say a rather

obvious fact about how this probability behaves as t varies.
Now, let us calculate gt. We start calculating from the end,

as promised, i.e., first find g
n
, then g

n−1, etc., filling in the
table shown in Fig. 1. So, given that the candidate at step n
is better than all the previous ones, what is the probability
that he is indeed the best among all the pretenders? One
hundred per cent, or 1 (Fig. 2; by the way, probabilities
can be measured in percentages, but percentages are actually
fractions, namely hundredths, so the probability can also be
expressed in fractions of 1). Next, suppose the princess was
at step n−1, and she was faced with a suitor who is better
than all the previous ones. What would be the probability of
losing if the princess chooses him? It will be the probability
that the last, n-th prince is the best.
But let us consider all princes and kinglets ordered in as-

cending order of “goodness”, or “quality” (as we remember,
this can be done by the conditions). Since the princes are
distributed over this list with equal probabilities (which also
follows from the conditions), the probability of the best candi-
date to be in the n-th place (i.e., precisely the probability of
losing) is exactly the same as to be in the 1st, the 57th, the
600th, or in any other place. Hence, all these probabilities

gt 1

t n−3 n−2 n−1 n

Fig. 2.
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gt
n−1
n

1

t n−3 n−2 n−1 n

Fig. 3.

are equal to 1/n, and therefore the probability of winning is

gn−1=1−
1

n
=

n−1

n
(Fig. 3).

Now it would be worthwhile to start conjecturing about
what gt equals in the general case, but there is still too little
information for this, so let us first calculate gn−2. This is
more difficult than in the previous two cases, but there exists
a very helpful way of calculating such probabilities. Imagine
the following situation.
Ivan Tsarevich* stands at a crossroads facing a stone with

the following inscription: “If you go right, you will drown
with probability 0.5, if you go left, you will break your neck
with probability 0.4, and if you go straight, you will be torn
by wolves with probability 0.3”. Ivan Tsarevich decides that
he will choose his way by tossing a coin: if he gets heads,
he will go straight, if he gets tails, he will toss the coin
again, and then if he gets heads, he will go left, and if he
gets tails, he will go right. What is the probability that Ivan
Tsarevich will die? It is clear that the probability of going
straight is 0.5, going left is 0.25, and going right is 0.25.
Of course, the sum of these probabilities is equal to one.
Ivan Tsarevich can be killed in one of three cases, according
to the number of directions. For example, the probability
that Ivan Tsarevich will take the straight way and die is
0.5 ·0.3 (it is worth noting that 0.3 is the probability that
Ivan Tsarevich will die only if he has already decided to go
straight, the so-called conditional probability; and without
knowing his future choice, he can calculate the probability of
being killed as a sum of three summands, one of which is
0.5 ·0.3). Thus, the total probability of his death is

0.5 ·0.3+0.25 ·0.4+0.25 ·0.5=0.375,

i.е., we have to to multiply the probability of each case by
the corresponding conditional probability, and then sum up
the results. In probability theory, this formula is called the
total probability law.

* Russian folk hero (Ivan, Son of the Tsar); there is a common motif in
Russian folk tales, where a knight comes to a fork in the road and sees
a menhir with an inscription that reads something like: “If you ride to the
left, you will lose your horse, if you ride to the right, you will lose your head”.
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t n−3 n−2 n−1 n

Fig. 4.

Let us now return to the calculation of gn−2. Suppose that
the (n−2)-nd contender turns out to be the best among all
previous ones; let us find the probability that he is indeed
the best, i.e., the probability that neither the n-th nor the
(n−1)-st contender is the best. Note that the probability that

the (n−1)-st is better than the (n−2)-nd is
1

n−1
(indeed, by

reasoning similarly to what we did when calculating gn−1, we
obtain that this probability is equal to the probability that the
(n−1)-st candidate is exactly in the last place in the list of all
n−1 candidates ordered in ascending order of “quality”). The
corresponding probability that the (n−1)-st is no better than

the (n−2)-nd is 1−
1

n−1
=

n−2

n−1
. Let us find the conditional

probabilities of winning. If the (n−1)-st is better than the
(n−2)-nd, then the (n−2)-nd is definitely not the best among
all the n suitors; i.e., the winning probability is 0 in this
case. If the (n−1)-st is worse than the (n−2)-nd, then the
(n−2)-nd is the best among the first n−1 contenders. What
is the probability of winning in this case? In other words,
what is the probability for the best among the first n−1
contenders to remain the best among all the n? But we have

already computed this probability; it is
n−1

n
, i.e., exactly g

n−1.
Thus,

gn−2=
1

n−1
·0+

n−2

n−1
·gn−1=

n−2

n−1
·
n−1

n
=

n−2

n
,

and we can fill in our table a little further (Fig. 4).
Now we already have a guess about the general formula

for g
t
. And indeed, using the mathematical induction method,

it is not hard to prove that gt= t/n (please do the proof!).
Now let us return to ht. Recall how we have defined this

quantity. Namely, h
t
is the probability for the princess to win,

i.e., to eventually have the best suitor if she reaches step t and
skips the suitor that she meets at this step and then proceeds
with the optimal strategy. In other words, this is the prob-
ability of winning when acting optimally from step t+1, but
what happened before that, neither the princess cares about
nor we care at all. Later we will calculate this probability ht,
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and now we just observe one immediately noticeable property
of this function. From the definition of the probability h

t
it follows that whatever strategy we propose in which the
princess may start choosing only from step t+1, the winning
probability in case the princess acts according to this strategy
is not greater than ht. So, let us propose the following one:
the princess, instead of acting optimally from the (t+1)-st
step, sends away the (t+1)-st candidate and acts optimally,
but starting from the (t+2)-nd step. Then, on the one hand,
the winning probability in case of choosing such a strategy
is ht+1, and on the other hand, it is one of the strategies
for any action starting from step t+1; hence, we immediately
obtain the inequality ht ≥ht+1 for any t. This fact can be
reformulated as follows: the sooner the princess starts to act
according to an optimal strategy, the more chances she has to
win. Therefore, ht is a monotonically non-increasing function
(though of an integer argument). For example, hn=0, because
if the princess rejects the last challenger, then no matter how
perfectly optimal her subsequent strategy is, the princess will
not win, since there are no more candidates left; however,
h1 is by no means zero but rather some positive number, the
subject of our whole study; i.e., h1>hn.
Let’s see what we have got. Let’s sketch graphs of the

functions h
t
and g

t
, drawing them with smooth lines, although

in fact they are dotted; you may think that we simply connect
these dots. On one axis we plot t, time, or step number, and on
the other axis we plot p, chance, or probability, taking values
from 0 to 1. In drawing, we take into account the results
already obtained: linearity of gt and monotonicity of ht. Then
we obtain something like what is shown in Fig. 5. It is clear
that the plots of the two functions must intersect. Denote
the x-value of the intersection point by T (the functions are
defined at integer points only, but we have somehow extended
them onto all numbers, so T need not be integer). Recall our
strategy that we have devised for the princess: if at step t the

p

1

t
1
T n t

h
t

g
t

Fig. 5.
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p

1

t
1
T n t

h
t

g
t

Fig. 6.

probability ht is greater than gt, then continue regardless of
the candidate; if ht is not greater than gt, then stop in case
the current candidate is the best among all previous ones, and
continue in case he is not. If t1 is the last integer before T,
then the strategy, as can be seen from Fig. 5, transforms
into the following: skip the first t1 people, only looking at
them for future comparison with the others, and then stop at
the first one who is better than all his predecessors. Now we
realise what mistake, or rather inaccuracy, we have made when
drawing the graph. Let us compare, for example, h1 and h2.
Most likely, t1 is greater than two, and hence also greater
than one. Therefore, the strategy at step 1 and at step 2 is
the same: wait until step t1 but meanwhile skip the challenger
prince. Hence, the winning probability in these cases is exactly
the same and coincides with ht1

. Thus, we conclude that until
step t1 the function ht remains constant, being approximately
of the form shown in Fig. 6.
To solve the problem, it only remains to calculate h

t
, and

thereby t1, and this is what we are going to do now. We shall
again do it starting from the end, and by the above remark we
shall compute h

t
only for t≥ t

1
. As was already mentioned, we

have hn=0 (Fig. 7). Let us see what we have for hn−1. This
is the probability that the princess will get the best suitor if
she skips the (n−1)-st. But this will only happen if the last

ht 0

t n−3 n−2 n−1 n

Fig. 7.

ht

1

n
0

t n−3 n−2 n−1 n

Fig. 8.
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ht

(n−2)+(n−1)
n(n−1)

1

n
0

t n−3 n−2 n−1 n

Fig. 9.

one is the best. We have already calculated the probability of
this; it is 1/n (Fig. 8). Let’s try to figure out h

n−2. The
calculation is not so simple in this case. Suppose that the
princess skips the challenger with number n−2 and after that
acts according to the optimal strategy. Then there are two
possibilities: the (n−1)-st is the best among the first n−1
candidates (the probability of this, as we have already noted

many times, is
1

n−1
), or the (n−1)-st is not the best among

them (respectively, the probability of this is
n−2

n−1
). In the

first case it is obvious that this last one should be chosen, this
corresponds to the optimal strategy (recall that we agreed to
compute ht under the assumption that t≥ t1), and the winning

probability is simply gn−1=
n−1

n
. In the second case, the

princess must automatically refuse the prince, and then the
chances of winning are hn−1=1/n. By the total probability
law already discussed, we obtain that

hn−2=
1

n−1
·
n−1

n
+

n−2

n−1
·
1

n
=
(n−2)+ (n−1)

n(n−1)

(let us keep it in this form for a while; Fig. 9).
So far it is problematic to make a conjecture about the

general form of h
t
. However, later on we will still have

to compare ht and gt. This can be done, for example, by
examining the ratio ht/gt. If it is greater than 1, then ht is
greater than g

t
, and if it is less than 1, then, vice versa, g

t
is greater than ht. By dividing the numbers presented in the
table in Fig. 9 by the numbers from the table in Fig. 4, we can
easily obtain the results shown in Fig. 10 (do this!). The quite
noticeable regularity in these results is not accidental. Let us

ht

gt

1

n−2
+
1

n−1
1

n−1
0

t n−3 n−2 n−1 n

Fig. 10.
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try to prove that

h
t
=

t

n
·

�

1

t
+

1

t+1
+ . . .+

1

n−1

�

(here we have used the already know fact that gt= t/n). Let
us proceed by induction starting from the end. We have the
induction base (t=n, n−1, and n−2). Assuming that for ht
we have already obtained the formula, let us derive it for ht−1.
Thus, suppose that at step t−1 the princess has skipped the
suitor and passed to step t. Then there are two possible cases:
the t-th candidate may turn out to be better than all previous

ones (the probability of this being
1

t
) or not (this probability

being
t−1

t
). In the first case, the probability of eventually

winning is t/n=gt (because, recall, we are calculating ht for t
that are greater than t1, and for these the princess’s optimal
strategy is to choose a suitor once he is better than all the
previous ones). In the second case, the probability of the
princess’s eventual winning is

ht=
t

n
·

�

1

t
+

1

t+1
+ . . .+

1

n−1

�

(we already “know” this formula by the induction assumption).
Thus,

ht−1=
1

t
·

t

n
+

t−1

t
·

t

n

�

1

t
+

1

t+1
+ . . .+

1

n−1

�

=

=
1

n
+

t−1

n

�

1

t
+

1

t+1
+ . . .+

1

n−1

�

=

=
t−1

n(t−1)
+

t−1

n

�

1

t
+

1

t+1
+ . . .+

1

n−1

�

=

=
t−1

n

�

1

t−1
+
1

t
+

1

t+1
+ . . .+

1

n−1

�

.

The formula for ht is proved.
Now, to finally solve the problem, we need to compare ht

with gt. To do this, a while ago we tried to compare ht/gt
with 1. As it is already clear now, for t≥ t1 we have

ht

gt
=
1

t
+

1

t+1
+ . . .+

1

n−1
.
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Therefore, we have obtained a way to find t1: we should sum
up the terms 1/t starting from t=n−1 and constantly de-
creasing t until the sum becomes greater than 1; the very t
at which this will happen is t1 (and at some t this will defi-
nitely happen, if of course we do not have the extreme case
of n being equal to 1; however, in this case the princess

has no problems). For example, if n=5, then
1

4
+
1

3
<1 but

1

4
+
1

3
+
1

2
>1; i.e., the strategy is as follows: skip the first

one, skip the second one, and then, starting from the third
one, take as a husband the first one who is better than all
the previous ones. In principle, this method always leads to
an answer, but we would like to simplify it further, especially
because this is indeed possible, as we will see now. Let us try
to compute the sum that we have written on the right-hand
side of the formula for ht/gt. It should be noted here that we
will compute this sum only approximately, and to do so we
need to assume that both t and n are large enough (the orig-
inal problem was formulated for a large n=1000, and from
the previous considerations it follows that t1 is also large, so
our assumption is reasonable).

So, we are to compute the sum S=
1

t
+

1

t+1
+ . . .+

1

n−1
.

First, we do the following. Draw the graph of the function
y=1/x. On the graph, mark the points with x-values t, t+1,
t+2, . . . , n. Next, we will draw rectangles. The first one
is located between t and t+1, with its base on the Ox axis
and its height being 1/t. The second one is located similarly

between t+1 and t+2, its height being
1

t+1
. Similarly, the

third, fourth, etc.; the last one will be located between n−1
and n (Fig. 11). The number of rectangles will be large,
because, as we remember, t and n are large numbers.

y= 1
x

t n x

y

O

Fig. 11.

y= 1
x

y

O x

Fig. 12.
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Note the following: the area of the obtained figure which
is the union of all rectangles is exactly equal to the sum S
that we need to compute.
Now we are going to do something very strange. Again,

let’s draw a separate graph of the function y=1/x (Fig. 12).
Now let us do the following operation: shrink it horizontally
by a factor of 10. What does this mean? We simply multiply
the x-value of each point of the graph by 1/10 (so the point

moves along the Ox axis towards the Oy
y

O x

shrinking by
a factor of 10

a)

y

O x

b)

Fig. 13.

y

O x

st
re
ct
hi
ng
by

a
fa
ct
or
of
10

a)

y

O x

b)

Fig. 14.

axis; that is why this transformation is
called shrinking). The graph will become
very narrow, squeezed to the coordinate
axes (Fig. 13). Now let’s stretch the re-
sulting graph vertically by a factor of 10,
i.e., multiply the y-value of each point of
the graph by 10 (Fig. 14). What have we
got? It turns out that after these two
transformations the graph of the function
y=1/x transforms into itself, i.e., into
the graph of the function y=1/x. Indeed,
after the first transformation, a point of
the graph with coordinates (x, 1/x) goes
to the point with coordinates (x/10, 1/x),
and this new point after the second trans-
formation goes to the point (x/10, 10/x),
which lies on the original graph. (In fact,
we have only checked that points of the
original graph go to some other points of
the original graph, but we have not checked
that each point of the graph is an image
of some point, i.e., that to each point of
the graph some other point goes. How-
ever, it is only important to understand
that this check is necessary, and the way
to do it is completely similar to what we
have done.)
Now let’s add the figure of rectangles to

the original graph (see Fig. 11) and perform
the same operations. We already know what
will happen to the graph. It will turn into
itself. But what will happen to the fig-
ure? It is clear that it will be shrunk and
stretched somehow, so its shape will not be
preserved. But we can surely claim that its
area (just what we are interested in) will
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not change. Indeed, let’s take any single rectangle from this
figure. First, by the first transformation we reduce its area
by a factor of 10, and then by the second we increase it by
a factor of 10; i.e., its area becomes the same as it was. So,
the area of the whole figure does not change.
What did we need all this for? Here’s the reason. Let’s

do the same operations with the picture in Fig. 11, but now
we will shrink and stretch it by a factor of t instead of 10.
Let’s see what will happen. Note that previously we plotted
the graph with unclear scales on the axes, because, on the
one hand, t is very large, 1/t is very small, and it was
difficult to adequately depict them; and on the other hand,
we wanted to have a picture that is in the least bit visual.
On the contrary, now we can freely declare the scales on the
axes equal, because the point with coordinates (t, 1/t) goes
to the point with coordinates (1, 1). All rectangles are now
very narrow, of width 1/t (because t is large), and they are
located on the interval from 1 to n/t (Fig. 15). Since all
the rectangles are so narrow, the part of the figure above the
hyperbola (the graph of the function y=1/x) has a very small
area, so the area of the figure, which is equal to our sum S,
is almost exactly equal to the area below the hyperbola on
the interval from 1 to n/t. Introduce the following notation:
denote by S(x) the area of the curvilinear trapezoid bounded
by the hyperbola on the interval from 1 to x (Fig. 16). Thus,
we have: S≈S(n/t). Recall that our problem is to find the
first t such that the sum S for it is greater than 1. As we
have just realised, this is equivalent to the problem of solving
the equation S(x) = 1.
To solve this equation, we will first try to find out some

properties of the function S(x). The first obvious property
is that S(1)=0. Indeed, when x=1, the curvilinear trapezoid
degenerates into a segment, and its area is zero. The second
property is that S(x)>0 whenever x>1. The third property
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is that the function S(x) is monotonically increasing. The
fourth property is crucial: we claim that for any x, y>1 we
have the equality S(xy) =S(x) +S(y). To prove it, let us first
illustrate what this formula means. Let’s once again draw the
graph of the function y=1/x, and mark points with abscissae

1, x, y, and xy on it (Fig. 17).

y= 1
x
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O x1

1

xyx y

Fig. 17.

Note that the area of the curvi-
linear trapezoid on the interval
from x to xy is exactly equal
to S(xy)−S(x) (by the definition
of the function S(x)). Now let’s
make the following transforma-
tion of the whole picture: first
shrink it horizontally by a factor
of x and then stretch it vertically
by a factor of x. As we remember,

the graph transforms into itself under this transformation.

Furthermore, the point with coordinates

�

x,
1

x

�

goes to the

point with coordinates (1, 1), and the point with coordinates
�

xy,
1

xy

�

goes to the point with coordinates

�

y,
1

y

�

. Hence,

the curvilinear trapezoid below the hyperbola on the interval
from x to xy transforms into a curvilinear trapezoid on the
interval from 1 to y. At the same time, as we remember,
the area is preserved under our transformation, hence we
have the equality S(xy)−S(x) =S(y), as required. (A careful
reader notes that we have proved the invariance of area under
such transformations only for a rectangle. The proof for
curvilinear figures is somewhat more complicated and relies
on the very definition of area, but still the fact remains true
for a curvilinear figure if its area can be approximated as
accurately as desired by the total area of some rectangles
covering this figure.)
These properties resemble the properties of one of the func-

tions well known from the school programme. What is this
function? It is logarithmic! Now we will prove it.
In school, before the logarithmic function, we first study

the exponential function, which is the inverse of the log-
arithmic function. Let us write down the property of
the function inverse to S(x), which we denote by F(x),
derived from the already known fourth property of S(x)
itself: F(x+y) =F(x) ·F(y). From this we immediately obtain
that F(x) is exponential. Indeed, let F(1)=a. Then F(2)=a2,
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F(3)=a3, F

�

1

2

�

=
√
a=a

1
2 , etc., and for all rational x we have:

F(x) =ax. Since F(x) is monotone (which follows from the cor-
responding property of S(x)), the equality of F(x) and ax

holds for all real numbers, whence we obtain that F(x) =ax

for all x (as we can see, the proof is not quite complete; we
leave it to the reader to carry out a complete and rigorous
proof on his own). It is convenient to ap-

y
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Fig. 18.

prehend these considerations having a pic-
ture to look at. Let us draw the graphs
of the functions S(x) and F(x) (Fig. 18).
By the way, one can easily prove one
more interesting property of S(x), which,
however, is not directly related to our dis-
cussion. Namely, it can be proved (and can
be seen from the picture) that the function
S(x) is infinitely increasing, i.e., takes ar-
bitrarily large values. Indeed, if S(2)= c,
then S(4)=2c, S(8)=3c, and in general,
S(2n) =nc. Therefore, S(x) is infinitely
increasing. Hence we have obtained an
interesting fact: the area below the hy-
perbola on the interval from 1 to infinity
is itself infinite, which, generally speaking, does not follow
merely from the fact that this figure is unbounded and ex-
tends infinitely along the Ox axis; there exist infinite figures
with finite areas.
So, we have proved that F(x) =ax. Hence we obtain that

the inverse function is S(x) = log
a
(x). What is a? It is F(1),

i.e., a number at which the value of the function S(x) (the
inverse of F(x)) is 1. Thus, S(a) = 1, i.e., a is exactly the
number we agreed to find when we first started to compute
the sum S. We needed it to be able to know when the princess
should make her choice. Let’s try to evaluate this number.

y

O x1 2

a) y

O x1 2 2.5

b) y

O x1 2 3

c)

Fig. 19.
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To estimate the number a, we should try to estimate dif-

ferent areas below the graph of y=
1

x
. For example, let us

look at the area of the curvilinear trapezoid below this graph
on the interval from 1 to 2, which is shown in Fig. 19a.
Its area is strictly less than that of the square shown in the
same figure, and the area of the square is 1. Hence, S(2)<1
and therefore a>2. Let’s try to compare a with 2.5. To do
this, let us estimate the area S(2.5) shown in Fig. 19b. This
area is strictly bounded from above by the sum of the areas
of the trapezoid and the square shown in the same figure,

and their total area is
3

4
+
1

4
=1, so S(2.5)<1 and a>2.5.

Now let’s try to estimate a from above. This is somewhat
more difficult, because now we need to approximate the area
by figures contained in the curvilinear trapezoid rather than
containing it. From Fig. 19 c we see that

S(3)>
1

12
+
1

11
+
1

10
+
1

9
+
1

8
+
1

7
+
1

6
+
1

5
>
1

12
+
1

10
+
1

10
+

+
1

10
+
1

8
+
1

7
+
1

6
+
1

5
=
70+252+105+120+140+168

840
=
855

840
>1,

so a<3. Thus, we have just established that a is some num-
ber from the interval [2.5, 3]. The quick-witted have already
guessed that a is actually the number e, known from the
school course or the course of calculus, which is approximately
2.718281828 . . . .
Thus, it is now clear when ht/gt=1 (actually, as we re-

member, this will probably not happen, since t is an integer,
so there will be only ht/gt ≈1). This happens when n/t= e,
i.e., t/n=1/e. Recall our figure showing the graphs of the
functions ht and gt (Fig. 20).
As we have just found out, the number that corresponds

to the intersection point of the graphs is t=n/e. More-
over, ht=gt= t/n=1/e; i.e., the probability of success for the

1
e
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1
e
·n

n t

h
t

g
t

Fig. 20.
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princess, which we have been seeking for from the very be-
ginning, is 1/e≈0.368. Thus, the answer to the initially
posed problem is as follows: first the princess should skip the
first 1/e part of the suitors (in the case of n=1000 this is
about 368 people), only memorising them for future compar-
ison, and then she should take as her husband the first one
who has the property that he is better than all his predeces-
sors. In this case, the probability of finally getting the best
one out of all n candidates is approximately 0.368.

* * *

As already mentioned above, here we have described
a method for solving the problem which is different from
the original one, invented by E.B. Dynkin. The described
method can easily be generalised to a number of similar prob-
lems. For example, we can assume that the princess is not so
fastidious as to demand only the best candidate, and she will
be satisfied with the second best or, for example, with one of
the three best. In a more general case, she aims at choosing
one of m best suitors (m being a fixed number), and she does
not care which of these m ones she will get. (The problem we
have considered in detail corresponds to m=1.)
An even more general setting (slightly more difficult to

formulate) is the following. The princess decides in advance
how happy (satisfied) she will be if she gets the k-th best
among all suitors. Her level of satisfaction can be measured
in some points (conventional units). It is natural to assume
that the level of happiness is the higher the better the suitor
(in the sense of his general rating). Thus, the princess may
decide that if she gets the best husband, she will be 1000
points happy; if she gets the second best, 500 points; the
third, 330 points, etc. The optimal strategy for the princess
in this case is the one in which the number of points she
would gain on average would be as high as possible. Here,
a certain difficulty is to explain what is meant by ‘on aver-
age’. In probability theory, the notion of the average value
(also called the mean, or mathematical expectation) is defined
through the notion of probability. We have not discussed the
definition of probability here, preferring to use some of its
properties that can be explained “in simple terms”. Therefore,
it is somewhat difficult to give the definition of the mean,
describe its properties, and discuss the latter problem setting
in any detail. (However, in the described situation the average

score is equal to the sum
n
P

i=1

bi pi, where pi is the probability
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that the chosen suitor will be the i-th in quality among all
candidates, and b

i
is the number of points “earned” in this

case).
Therefore, let us confine ourselves to the case where the

princess wants to get one of the m best suitors, no matter
which one. The scheme described above works in this case
as follows. If the princess has waited until the last (n-th)
suitor, her strategy is obvious. If he turns out to be one of
the m best, she chooses him and she wins. If not, she loses
(and retires to a convent). Suppose we have already worked out
how the princess should behave if she has not made a choice up
to the t-th contender inclusive. Let her be faced with the t-th
contender. We denote by ht the probability that the princess
will make a successful choice if she refuses the t-th challenger
and after that uses the optimal strategy (we have assumed that
this strategy is already known). The probability ht, of course,
does not depend on what rank among the previous ones the
t-th challenger was: the first, the last, . . . . However, the
probability that the princess will win by choosing precisely the
t-th candidate does depend on it. If he is worse than the m-th
(in quality) among those who have already been examined,
there is no chance that the princess will win by choosing him.
If he is the best among the first t ones, the probability of
making a successful choice by stopping at him is apparently
higher than if he is the second (in quality) among them. Let
us denote by gt(k) the probability of success if the princess
chooses the t-th candidate provided that he is the k-th best
among the first t ones. Here, k can be any (integer) number
from 1 to t, but it is clear that if k>m, then gt(k) = 0. We
know (see above) that g

n
(k) = 1 if k≤m and g

n
(k) = 0 if k>m.

One of the strategies of the princess after rejecting the
t-th challenger (possibly, and even most probably, not an op-
timal one) is to reject the (t+1)-st challenger anyway. Hence
it follows that the probability ht (which is the probability of
making a successful choice under the princess’s optimal be-
haviour after the t-th candidate has been rejected) is at least
not lower than the probability ht+1 (the probability of making
a successful choice if the (t+1)-st candidate is also rejected):
h
t
≥h

t+1
.

Let us try to figure out how the probability gt(k) behaves as
a function of t and k. The following is more or less obvious.
First, for a fixed t, the probability gt(k) is non-increasing
with k, i.e., it is the greater (or, more precisely, not smaller)
the smaller k. Second, for a fixed k, the probability gt(k) is
non-decreasing with t: when choosing from 1000 candidates,
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it is better to choose the third in quality among those who
have been examined if this is the 990th than to do so if this
is the 10th (here, of course, we assume that m≥3). These
properties can be strictly deduced from equations (*) and (**)
below.
If we already know (or, more precisely, the princess

knows) ht and gt(k), then, as can easily be seen from the
above reasoning for m=1, the optimal strategy is as follows.
Suppose that the princess is faced with the t-th candidate for
her hand (she has rejected the previous t−1), and he turns out
to be the k-th in quality among the first t candidates. Then
the princess compares the probabilities ht and gt(k). If the
probability ht is greater, she rejects the suitor. If the proba-
bility gt(k) is greater, she gives him her consent. (If by chance
the probabilities ht and gt(k) happen to be exactly equal, she
can do either way. Above, in a similar situation, we suggested
that the princess should not waste time but accept the suitor’s
offer.) The probability of success for the princess in this case
is max(ht, gt(k)) (the largest of the two numbers). By the way,
it is easily seen that the initial probability of success for the
princess (before the start of the viewing) can be found as h0.
The above-described monotonicity properties of the probabil-

ities ht and gt(k) as functions of t and k (the non-increasing
of h

t
with t, non-decreasing of g

t
(k) with t and its non-

increasing with k) lead to the following general description
of the optimal strategy. There exist non-negative (integer)
numbers t

1
≤ t
2
≤ . . .≤ t

m
<n (depending on n and m), through

which the optimal strategy is described as follows. The
princess should skip the first t1 people without consenting to
the marriage by any means (only evaluating them for future
comparison with the rest). She gives her consent to marriage
to a suitor with a number from t1+1 to t2 if (and only if) he
is better than all the previous ones. She chooses a suitor with
a number from t2+1 to t3 if he is no worse than the second
best among all those she has seen (including himself), and so
on. A candidate with a number greater than t

m
is chosen if

he turns out to be one of the m best among all those she has
seen. If no challenger satisfying the described properties is
found, the princess loses.
A natural question arises: How can we find the proba-

bilities ht and gt(k)? As above, they can be calculated in
succession (starting from the end!). It is clear that hn=0 and
that gn(k) is equal to one if k≤m and to zero if k>m. Sup-
pose we already know (have computed) the probabilities ht+1
and gt+1(k) for all k. Let us compute ht. (At this point, we
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can even assume that t=0. As a result, we will get the prob-
ability h

0
equal to the absolute probability of the princess’

success at the time the viewing starts.) If the princess skips
the t-th contender, she is faced with the (t+1)-st. He could
be the best among all all those she has seen (including, of
course, himself), or the second best, or the third, etc., up
to the (t+1)-st. It is easily seen that the probability of each

of these cases is the same and equals
1

t+1
. If the (t+1)-st

contender turns out to be the k-th in quality, the probability
of success for the princess under the optimal selection strat-
egy is, as we know, max(ht+1, gt+1(k)). Thus, with probability

1

t+1
the probability of success is max(ht+1, gt+1(1)), with the

same probability it is max(ht+1, gt+1(2)), and so on. Applying
the total probability formula discussed above, we obtain that

h
t
=

1

t+1

t+1
X

k=1

max(h
t+1

, g
t+1
(k))

=
1

t+1

m
X

k=1

max(h
t+1

, g
t+1
(k)) +

t+1−m

t+1
h
t+1

(*)

(the last equality holds since when k>m, we know that
gt+1(k) = 0, and therefore max(ht+1, gt+1(k)) =ht+1).
Now let us discuss the computation of the probabili-

ties gt(k). Suppose that the princess has decided to choose
the suitor with number t, who is ranked k-th in quality among
all suitors she has seen (including himself). To calculate the
probability of her success, let us imagine that the princess
(having already made her choice) decided (just being curious)
to look at the (t+1)-st candidate as well. With probabil-

ity
1

t+1
this contender would be the best of those already

seen, with probability
1

t+1
he would be the second, and so on.

In the list of the first t+1 candidates, the princess’s favourite
(whose offer she has already accepted in the previous step)
can either keep his position and remain the k-th in quality, or
give up one position in the ranking and become the (k+1)-st.
It is easy to see that the probability of the second scenario
(the favourite loses his position and becomes the (k+1)-st in

the list of t+1 contenders) is
k

t+1
(this is the probability

that the (t+1)-st contender turns out to be no worse than

22



k

1
2

9

5

12

7

12

13

18

5

6

11

12

35

36
1 1

gt(k):

8

>

>

>

>

>

<

>

>

>

>

>

:

2 0
1

36

1

12

1

6

5

18

5

12

7

12

7

9
1

ht:
233

360

233

360

233

360

233

360

28

45

41

72

1

2

7

18

2

9
0

t: 0 1 2 3 4 5 6 7 8 9

Fig. 21.

the k-th in quality), and the probability of the first scenario

(the favourite keeps his position) is
t−k+1

t+1
. It is easily seen

that under the first scenario the probability of success for
the princess is gt+1(k), and under the second scenario it is
gt+1(k+1). Again applying the total probability law, we obtain

gt(k) =
k

t+1
gt+1(k+1)+

t−k+1

t+1
gt+1(k). (**)

Equations (*) and (**) allow us to calculate the probabil-
ities ht and gt(k) successively, starting from the end, i.e.,
from t=n, and thus to find the optimal strategy for the
princess. For small values of n this can be done, for example,
by filling in a table like the one shown in Fig. 21 for n=9
and m=2.
From this table and the graph shown in Fig. 22 it is seen

that in this case we have t1=3 and t2=6. This means that the
optimal strategy for the princess is to reject the first three
candidates in any case; to stop her choice on the fourth, fifth,
or sixth if he turns out to be better than all the previous ones;
and further (i.e., when meeting the candidates starting from
the seventh) to agree on the second best among all those she
has seen. Then the probability of success (h0) turns out to be

233

360
≈0.65.

We have found out that for m=1 and for a large number n
of contenders, the ratio t1/n is almost constant (i.e., almost
independent of n) and approximately equals 1/e. More pre-
cisely, we can say that the ratio t1/n tends to 1/e as n tends
to infinity (n→∞). It turns out that a similar property holds
for any fixed m: for any i (i=1, . . . , m), the ratio ti/n has
a limit as n→∞. Moreover, the probability of making a suc-
cessful choice under the optimal strategy also has a certain
limit as n→∞. For instance, for m=2 the ratio t2/n tends
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to 2/3, and the ratio t1/n tends to the (smaller) root x0 of
the equation

x− ln x=1+ ln
3

2
.

This x0 is approximately 0.347. Thus, for a large number n
of suitors and for m=2, the optimal strategy for the princess
is as follows. She should skip approximately 34.7% of the
candidates without consenting to the marriage; from the next
approximately 32% (up to 66.7% of all candidates), she should
consent to the marriage only to the one who is better than
all the previous ones; and from the remaining 33.3% of the
candidates, she should consent to the second best among those
already seen. In this case, the probability of a successful choice
(again when n is large, i.e., as n→∞) turns out to be 2x

0
−x2

0
,

which is approximately 0.574. So, in this case, the princess’
chances for a successful choice (under the optimal strategy)
are greater than 50%.


