Предисловие	9
ЧАСТЬ I. Непрерывные процессы и дифференциальны	
уравнения	·C
уравнения	
Глава I. Эволюционные модели	13
§ 1.1. Дифференциальные уравнения и эволюционные модели	13
1.1.1. Смысл производной: скорость изменения величины	13
1.1.2. Касательная и геометрический смысл производной	15
1.1.3. Понятие линейного приближения	16
1.1.4. Движение по прямой	19
1.1.5. Одномерные эволюционные модели	20
1.1.6. Производные и скорости в механике (кинематике)	23
1.1.7. Геометрический (кинематический) смысл вектора	
скорости	25
1.1.8. Двумерная эволюционная модель Вольтерры—Лотки .	28
§ 1.2. Представление о динамических системах	30
1.2.1. Система уравнений Ньютона. Фазовая плоскость	31
1.2.2. Равноускоренное движение и свободное падение	32
1.2.3. Двумерная динамическая система (пример)	35
1.2.4. Консервативные одномерные системы. Модель «ша-	
рик в желобе»	38
1.2.5. Пример консервативной системы: шарик на пружинке	41
Упражнения, задачи и задания к гл. I	43
D II II	
Глава II. Интегральное исчисление	52
$\S 2.1$. Анализ дифференциального уравнения $y' = f(x)$	52
2.1.1. Интегрирование как решение дифференциального-	50
уравнения	52
2.1.2. Теорема единственности решений уравнения $y' = f(x)$	
и свойства первообразных	55
2.1.3. Вопросы существования решений уравнения $y'=f(x)$,	r.c
или первообразных	56

§ 2.2.	Геоме	трическая интерпретация уравнения $y' = F(x,y) \ldots 5$	58
	2.2.1.	Поля направлений и интегральные кривые диффе-	
		ренциальных уравнений	58
	2.2.2.	Метод Эйлера для построения интегральных кривых . 5	59
	2.2.3.	Изоклины полей направлений и графическое интегри-	
		рование дифференциальных уравнений	60
§ 2.3.	Ломаі	ные Эйлера, решения уравнения $y' = f(x)$ и интеграл . (65
			65
			67
		Основная теорема анализа: производная переменной	
		площади	68
	2.3.4.	Теоремы существования решений уравнения $y' = f(x)$	
		и первообразных	70
	2.3.5.	Площади криволинейных трапеций как приращения	
		первообразных	71
	2.3.6.	Интегральные суммы и интеграл	73
§ 2.4.	Геоме	трические приложения интеграла	76
	2.4.1.	Основная идея: применение формулы Барроу 7	76
	2.4.2.	Площади плоских фигур	77
	2.4.3.	Объем общего прямого цилиндра	80
	2.4.4.	Интегральная формула для объемов (интеграл пло-	
		щадей сечений)	81
	2.4.5.	Объем общего конуса	82
			84
			85
			85
	2.4.9.	Геометрические меры и интегральные суммы. Прин-	
		цип Кавальери	86
Упра	жнени	я, задачи и задания к гл. II	39
Гпав	a III	Экспонента и дифференциальные уравнения 11	15
		йные процессы и дифференциальное уравнении $y'=ky$. 11	
y 0.1.		Пример: рост популяций	
		Пример: радиоактивный распад	
		Пример: вязкое трение	
		Анализ дифференциального уравнения $y'(x) = ky(x)$:	
	0.1.4.	подход Эйлера	18
	3 1 5	Анализ уравнения $y'(x)=ky(x)$: подход Ньютона 12	
		Анализ уравнения $y'(x) = ky(x)$: подход Пьюгона 12 Анализ уравнения $y'(x) = ky(x)$: разностный аналог 12	
832		ральный логарифм и экспонента	
5 9.2.		«Симметричное» лифференциальное уравнение 19	
	3 2 1	«Симметричное» пифференциальное уравнение 15	23

5

	3.2.2.	Натуральный логарифм
		Натуральная экспонента
	3.2.4.	Экспонента и показательная функция
		Решения дифференциального уравнения $y' = ky$ 130
§ 3.3.		ненциальный рост и теоремы о сравнении
0		Ньютоновы «экспоненциальные» многочлены 132
		Как отличить экспоненциальный рост от степенного? 133
		Что такое экспоненциальный рост на бесконечности? . 135
		Сравнение степенной и логарифмической функций
		при $x \to +\infty$
	3.3.5.	Сравнение степенной и логарифмической функций
		при $x \rightarrow 0+\dots$
§ 3.4.	Экспо	ненциальные модели
		Пример: радиоактивный распад
	3.4.2.	Пример: ядерное деление (цепная реакция)140
		Неоднородное линейное дифференциальное уравне-
		ние $y' = ky + f(x)$
	3.4.4.	Неоднородное линейное дифференциальное уравне-
		ние $y' = ky + b$ (const)
	3.4.5.	Пример: уравнение «атомного реактора»
§ 3.5.	Линей	іные дифференциальные уравнения с переменными
	коэфф	рициентами
	3.5.1.	Метод Лагранжа: вариация произвольной постоянной 149
	3.5.2.	Пример: свободное движение с трением
	3.5.3.	Пример: свободное падение с трением
	3.5.4.	Однородные линейные уравнения с переменными ко-
		эффициентами: $y' = k(x)y$
	3.5.5.	Общие линейные уравнения с переменными коэффи-
		циентами: $y' = k(x)y + f(x)$
Упра	жнени	я, задачи и задания к гл. III
г	- TX 7	Модели с разделяющимися переменными 173
		Модели с разделяющимися переменными 173 из эволюционного уравнения $y' = g(y)$. Примеры 173
84.1.		поля направлений уравнения $y=g(y)$. Примеры 173. Поля направлений уравнения $y'=g(y)$ и симметрич-
	4.1.1.	ные им
	119	Примеры: линейные уравнения $y' = ky[+b]$
		Теоремы о решениях уравнения $y' = ky[+b]$
	±.1.0.	ные решения
	111	Автономные уравнения как модели эволюции (напо-
	4.1.4.	минание)
	415	Пример: уравнение взрыва $y' = \alpha y^2$

	4.1.6.	Пример: логистическое уравнение $y' = y(a - y)$ 183
	4.1.7.	Пример неединственности решений уравнения $y' = g(y)$ 187
§ 4.2.	Форма	ализм Лейбница и уравнения с разделяющимися пере-
	меннь	ими
	4.2.1.	Формальное интегрирование уравнения $y' = g(y)$ 191
	4.2.2.	Разделение переменных и формализм Лейбница 194
	4.2.3.	Теоремы об уравнениях с разделяющимися перемен-
		ными
	4.2.4.	Особые точки дифференциальных уравнений 201
	4.2.5.	Разделение переменных в линейных уравнениях вида
		$y' = k(x)y \ [+f(x)] \ \dots \ $
$\S 4.3.$		реренциальные уравнения на плоскости 204
	4.3.1.	Уравнения на плоскости, векторные поля, фазовые
		портреты
		Фазовые портреты и особые точки: «узлы» и «седла» 207
		Дальнейшие примеры: еще «седла» и «центры» 212
§ 4.4.		рируемые системы. Модель биоценоза «хищник-жертва» 216
		Формализм Лейбница для систем на плоскости 216
	4.4.2.	Теорема о решениях: обоснование формализма Лейб-
		ница
	4.4.3.	Схема Лейбница отыскания решений систем на плос-
	4 4 4	кости
		Разделение переменных в системах на плоскости 221
		Качественный анализ модели Вольтерры—Лотки 222
3.7		Интегрирование системы Вольтерры—Лотки 223
упра	жнени	я, задачи и задания к гл. IV
		ЧАСТЬ II. Динамические системы
Глав	a V. ,	Дифференциальное уравнение Ньютона 237
		сохранения энергии
	5.1.1.	Энергия как первый интеграл одномерной системы
		Ньютона
	5.1.2.	Работа переменной силы
	5.1.3.	Потенциальная энергия одномерного силового поля 240
	5.1.4.	Закон сохранения полной механической энергии 244
	5.1.5.	История дифференциальных уравнений 245
$\S 5.2.$	Фазов	вые портреты и интегрирование уравнения Ньютона 254
	5.2.1.	Фазовые траектории и линии уровня энергии на фа-
		зовой плоскости

	5.2.2.	Скорость убегания и вторая космическая скорость	257
	5.2.3.	Схема интегрирования уравнения Ньютона	259
	5.2.4.	Обоснование схемы интегрирования уравнения Нью-	
		тона	263
	5.2.5.	О разрешимости и свойствах решений уравнения	
		Ньютона	264
	5.2.6.	Наглядная интерпретация одномерных консерватив-	
		ных систем	266
§ 5.3.		еренциальное уравнение гармонических колебаний	
		- $\omega^2 x$	
	5.3.1.	Математический маятник: малые колебания	267
	5.3.2.	Фазовый портрет гармонического осциллятора	268
	5.3.3.	Решения уравнения гармонических колебаний. Теоре-	
		ма единственности	269
	5.3.4.	Следствия из теоремы единственности: свойства ко-	
		синуса и синуса	271
	5.3.5.	Дальнейшие следствия: формула вспомогательного	
		аргумента	273
	5.3.6.	Канонический вид и параметры гармонических коле-	
		баний	275
	5.3.7.	Интегрирование дифференциального уравнения гар-	
		монических колебаний	
§ 5.4.		ение гармонических колебаний	
		Теорема о сложении гармонических колебаний	
		Векторные диаграммы гармонических колебаний	
		Пример: трехфазная система токов	
		Амплитуда суммы гармонических колебаний	
§ 5.5.		жденные колебания, резонанс и биения	
		Уравнение вынужденных колебаний и его решения	
		Анализ решений: резонанс и дрожание	
		Анализ решений: резонансное раскачивание и биения .	
		Точный резонанс	
§ 5.6.		из уравнения $x'' = \lambda^2 x$. Гиперболические функции	
		Решения уравнения $x'' = \lambda^2 x$. Теорема единственности	
		Второе доказательство теоремы единственности	
		Уравнение гиперболических косинуса и синуса	
		Неустойчивые положения равновесия	294
	5.6.5.	Фазовый портрет уравнения $x'' = \lambda^2 x$. Качественное	000
	.	описание	
		Движение по фазовым траекториям	
	567	Интегрирование уравнения $r'' = \lambda^2 r$	-300

	5.6.8.	Интегрирование дифференциального уравнения ма-
		тематического маятника
§ 5.7.	Анали	из уравнения $x'' + px' + qx = 0$
	5.7.1.	Общее уравнение второго порядка. Достижения Эйлера 305
	5.7.2.	Характеристическое уравнение
	5.7.3.	Случай положительного дискриминанта 307
	5.7.4.	Случай нулевого дискриминанта
	5.7.5.	Случай отрицательного дискриминанта
§ 5.8.	Колеб	бания в упруго-вязкой среде
	5.8.1.	Уравнение колебаний в упруго-вязкой среде 312
	5.8.2.	Случай сильного трения: апериодическое затухание . 313
	5.8.3.	Промежуточный случай: тоже апериодическое зату-
		хание
	5.8.4.	Случай малого трения: затухающие колебания 314
	5.8.5.	Случай малого трения: формальный подход 317
	5.8.6.	Уравнение вынужденных колебаний с трением: об-
		щий вид и поведение решений
	5.8.7.	Частное решение уравнения вынужденных колебаний
		с трением
	5.8.8.	Анализ частного решения
Упра	жнени	я, задачи и задания к гл. V
_		-
		Волновое уравнение и колебания 345
§ 6.1.		цие волны и волновое уравнение
		Одномерные волны и гармонические колебания 345
		Интерференция одномерных волн
		Интерференция двумерных волн
		Волновое уравнение
§ 6.2.		бания струны. Музыкальная акустика
		Уравнение упругой струны
	6.2.2.	Струна с закрепленным концом: отражение и интер-
		ференция волн
	6.2.3.	Струна с закрепленными концами: спектр собствен-
		ных частот
	6.2.4.	Несколько слов о музыкальной акустике
	Упраз	жнения залачи и залания к гл VI 356