предисловие	18
О значении физики и математики в естественных науках	22
Благодарности	27
Задача 0	29
Некоторые обозначения и соглашения	31
Том 1	
Механика и специальная теория относительности	
Часть 1. Основной материал	
Глава 1.1. Введение	41
§ 1.1.1. Законы Ньютона как законы сохранения и баланса	41
1.1.1.1. Нулевой закон Ньютона (гипотеза абсолютного времени)	42
1.1.1.2. Три закона Ньютона	42
1.1.1.3. Шесть законов Ньютона (законы Ньютона как законы	
сохранения и баланса)	44
§ 1.1.2. Материальная точка не так проста!	46
§ 1.1.3. Как могли бы возникнуть вариационные принципы (\sim)	47
§ 1.1.4. Обобщённые координаты	51
1.1.4.1. Если мы хотим использовать не только декартовы коор-	
динаты (~)	51
1.1.4.2. Свойства обобщённых координат	53
1.1.4.3. Геометрический смысл определителя* (л)	56
§ 1.1.5. Задачи 1—3	59
\S 1.1.6. Ответы к задачам 1, 2	61
Глава 1.2. Тензоры	63
§ 1.2.1. Вспоминаем матрицы (л)	63
§ 1.2.2. Тензоры общего вида	65
§ 1.2.3. Простейшие тензоры	67
1.2.3.1. Скаляр	67
1.2.3.2. Вектор	68
1.2.3.3. Ковектор	69
§ 1.2.4. Свойства тензоров	70
1.2.4.1. Самосогласованность закона преобразования тензоров .	70
1.2.4.2. Тензорное произведение и свёртка	71

1	72
1	74
1	76
111	79
	79
	82
1	82
	83
· 1	85
	87
§ 1.2.8. Ответы к задачам 4, 6, 7	89
Глава 1.3. Лагранжев формализм	91
	91
	92
	95
	96
	97
-	98
§ 1.3.5. Теорема Нётер	
1.3.5.1. Симметрия, не зависящая от времени	
1.3.5.2. Симметрия и закон сохранения	
1.3.5.3. Симметрия, зависящая от времени	
1.3.5.4. Сведение к тривиальному случаю	
1.3.5.5. Главные примеры применения теоремы Hëтер 1	
§ 1.3.6. Задачи 9—11	
§ 1.3.7. Ответы к задачам 9, 10	
Глава 1.4. Гамильтонов формализм	
§ 1.4.1. Уравнения Гамильтона	09
§ 1.4.2. Гамильтонов формализм как частный случай лагранжева	
формализма	
1.4.2.1. Множители Лагранжа	
1.4.2.2. Исключение скоростей	15
$\S1.4.3$. Преобразования Лежандра	
§ 1.4.4. Исключение циклических координат и метод Рауса* 1	
§ 1.4.5. Наблюдаемые и скобка Пуассона	
§ 1.4.6. Скобка Пуассона как скобка Ли*	22
§ 1.4.7. Уравнения Гамильтона с тензорной точки зрения** 1	23
§ 1.4.8. Скобка Пуассона с тензорной точки зрения**	
§ 1.4.9. Законы сохранения	27
1.4.9.1. Динамические инварианты*	
1.4.9.2. Интегралы движения	27

§ 1.4.10. Задачи 12—15	129
§ 1.4.11. Ответы к задачам 12—14	130
Глава 1.5. Задача Кеплера	132
§ 1.5.1. Сведение задачи двух тел к задаче одного тела	132
§ 1.5.2. Закон площадей (второй закон Кеплера)	133
§ 1.5.3. Разделение переменных в полярных координатах	135
§ 1.5.4. Первый закон Кеплера	137
§ 1.5.5. Третий закон Кеплера	139
§ 1.5.6. Теорема вириала	140
§ 1.5.7. Задачи 17—19	141
Глава 1.6. Кинематика и геометрия: от Ньютона к Минковскому	143
$\S1.6.1$. Кинематика точки и геометрия ньютоновской механики	144
1.6.1.1. Трёхмерное пространство ньютоновской механики	144
1.6.1.2. Четырёхмерное пространство ньютоновской механики.	145
§ 1.6.2. Постулаты специальной теории относительности	148
$\S1.6.3.$ Об отличиях современной физики от классической (ф)	149
§ 1.6.4. Мысленные эксперименты	149
1.6.4.1. Неизменность поперечных размеров	149
1.6.4.2. Собственное время и интервал	150
$\S~1.6.5.~O$ единицах измерения времени и расстояния в СТО	154
Глава 1.7. Кинематика и геометрия СТО	157
§ 1.7.1. Геометрия Минковского	
§ 1.7.2. Кинематика СТО	
§ 1.7.3. Импульс и соответствие с ньютоновской механикой	
§ 1.7.4. Частицы с переменной массой, упругие и неупругие процессы* :	
§ 1.7.5. Импульс и волновой вектор*	
§ 1.7.6. Задачи 20, 21	
§ 1.7.7. Ответы к задачам 20, 21	
Глава 1.8. Преобразования Лоренца и повороты	172
§ 1.8.1. Поворот круговой и поворот гиперболический	
§ 1.8.2. Быстрота и скорость	
§ 1.8.3. Преобразования Лоренца для разных объектов	
§ 1.8.4. Снова кинематические эффекты	
§ 1.8.5. Кинематическое и динамическое описание эффектов СТО	
§ 1.8.6. Матричные экспоненты*	
§ 1.8.7. Поворот и буст в произвольном направлении*	
§ 1.8.8. Задачи 22—28	
§ 1.8.9. Ответы к задачам 22—28	

Глава 1.9. Время как координата и энергия как импульс*	196
§ 1.9.1. Лагранжев формализм в расширенном конфигурационном	
пространстве*	
§ 1.9.2. Принцип Мопертюи и укороченное действие*	197
§ 1.9.3. Задача 29	199
Глава 1.10. Релятивистская частица	200
§ 1.10.1. Свободная релятивистская частица	200
§ 1.10.2. Релятивистская частица во внешнем поле	202
§ 1.10.3. Уравнения движения заряженной частицы в 3-мерном виде .	205
§ 1.10.4. Задачи 30, 31	206
$\S~1.10.5$. Ответ к задаче 31	207
Глава 1.11. Антисимметричные тензоры*	209
§ 1.11.1. (Анти) симметризация	211
§ 1.11.2. Форма объёма	212
§ 1.11.3. Ходжевская дуальность	214
§ 1.11.4. Внешнее произведение**	216
§ 1.11.5. Внешняя производная*	217
$\S~1.11.6$. Кинематические тождества для электромагнитного поля	
$\S~1.11.7$. Канонические преобразования**	220
§ 1.11.8. Гамильтонова эволюция как каноническое преобразование .	223
§ 1.11.9. Задачи 32—35	224
Глава 1.12. Интегрирование и дифференцирование полей (л)	
§ 1.12.1. Градиент (л)	
§ 1.12.2. Дивергенция (л)	228
§ 1.12.3. Ротор (л)	
$\S~1.12.4$. Связи между градиентом, дивергенцией и ротором (л) \dots	
§ 1.12.5. Лапласиан и уравнения математической физики (л)	235
Глава 1.13. Ньютоновская механика как предельный случай СТО	
$\S~1.13.1.~$ От преобразований Лоренца к преобразованиям Галилея	
§ 1.13.2. Преобразование энергии и импульса	
$\S~1.13.3$. Момент импульса и теорема о движении центра инерции	
§ 1.13.4. Тензор момента импульса	243
Глава 1.14. Неинерциальные системы отсчёта	
$\S~1.14.1$. Неинерциальные системы отсчёта в классической механике .	
$\S~1.14.2$. Так что же мы получили?	
§ 1.14.3. Неинерциальные системы отсчёта в СТО	250
8 1.14.4. Задача 36	250

Глава 1.15. Твёрдое тело	251
§ 1.15.1. Кинематика твёрдого тела	
1.15.1.1. Углы Эйлера в теоретической физике*	253
1.15.1.2. Углы Эйлера в теоретической механике**	
1.15.1.3. Навигационные углы (крен, тангаж, рысканье)**	
§ 1.15.2. Момент инерции	
§ 1.15.3. Момент импульса и эллипсоид инерции	258
§ 1.15.4. Свободный гироскоп	260
1.15.4.1. Вблизи оси с максимальным или минимальным мо-	
ментом инерции*	262
$1.15.4.2.\ $ Вблизи оси с промежуточным моментом инерции *	
§ 1.15.5. Вынужденная прецессия и нутация*	264
§ 1.15.6. Задача 37	266
Часть 2. Дополнительный материал	
Глава 2.1. Введение и дифференцируемое многообразие	273
§ 2.1.1. Решения задач 1—3	273
§ 2.1.2. Дифференцируемое многообразие	285
п	000
Глава 2.2. Тензоры и ковариантная производная	
§ 2.2.1. Решения задач 4, 5, 7, 8	
§ 2.2.2. Свободная частица в обобщённых координатах	
2.2.2.1. В плоском пространстве	
2.2.2.2. В искривлённом пространстве	
§ 2.2.4. Базисные векторы и ковекторы	
2.2.5.1. Дифференцируем ковектор вдоль кривой	
2.2.5.2. Дифференцируем ковектор вдоль кривои	
2.2.5.3. Определение ковариантной производной в общем случа	
2.2.5.4. Дифференцируем вектор	
2.2.5.5. Дифференцируем тензор общего вида	
2.2.5.6. Как преобразуются коэффициенты связности	
2.2.5.7. Параллельный перенос	
2.2.5.8. Геодезическая	
2.2.5.9. Связность и метрика	
2.2.5.10. Метрическая связность с кручением*	
Глава 2.3. Лагранжев формализм и производная Ли	
§ 2.3.1. Решения задач 9—11	
§ 2.3.2. Производная Ли	
§ 2.3.3. Вектор Киллинга	335

Глава 2.4. Гамильтонов формализм и коммутаторы векторных полей	338
§ 2.4.1. Преобразование Лежандра на графике	338
§ 2.4.2. Решения задач 12—15	339
§ 2.4.3. От симметрии к закону сохранения	348
§ 2.4.4. Вектор как дифференциальный оператор и сдвиг по векторно-	
му полю	349
§ 2.4.5. Коммутатор векторных полей	353
2.4.5.1. Пример: скобка Пуассона и коммутатор	355
2.4.5.2. Пример: векторное произведение и коммутатор	356
§ 2.4.6. Дальнейшее чтение	357
Глава 2.5. Задача Кеплера и прецессия перигелия	
§ 2.5.1. Движение в центральном поле в переменных ϕ , ρ = r^{-1}	
§ 2.5.2. Вывод первого закона Кеплера в переменных ϕ , $\rho = r^{-1}$	359
§ 2.5.3. Прецессия перигелия Меркурия (предварительно)	359
§ 2.5.4. Трёхмерное пространство как выделенный случай	361
§ 2.5.5. Теорема вириала и самоподобие потенциала	362
2.5.5.1. Преобразования подобия	362
2.5.5.2. Обобщая теорему Нётер	362
Глава 2.6. Кинематика и геометрия: от Ньютона к Минковскому	
§ 2.6.1. Дополнительные мысленные эксперименты	
2.6.1.1. Интерферометр Майкельсона	365
2.6.1.2. Относительность одновременности и синхронизация	
часов	
2.6.1.3. Чья линейка длиннее? Чьи часы быстрее?	369
2.6.1.4. Согласованность замедления времени и сокращения	
расстояний	
2.6.1.5. Эффект близнецов	
§ 2.6.2. Кинематика Ньютона и Минковского как вырожденный случай	й373
Глава 2.7. Кинематика и геометрия СТО	
§ 2.7.1. Нейтрино, мюон и другие частицы в стандартной модели \dots	
§ 2.7.2. Решения задач 20, 21	379
§ 2.7.3. Кинематика частицы в нелоренцевых координатах и ОТО $ \ldots $	386
2.7.3.1. Косоугольные координаты	
2.7.3.2. Пример: радиолокационные координаты на плоскости .	387
2.7.3.3. Криволинейные координаты	389
2.7.3.4. Пример: радиолокационные координаты в пространстве	392
Глава 2.8. Группа Лоренца и пространства постоянной кривизны	
§ 2.8.1. Аддитивность угла и быстроты	
2.8.1.1. Круговое и гиперболическое движение в механике	396

2.8.1.2. Угол, быстрота и площадь сектора	397
§ 2.8.2. Собственные векторы и числа буста	399
§ 2.8.3. Собственные векторы и числа поворота	400
§ 2.8.4. Понятие группы (л)	401
2.8.4.1. Определение и смысл (л)	402
2.8.4.2. Коммутативность и некоммутативность (л)	405
2.8.4.3. Подгруппы (л)	405
2.8.4.4. Стандартные матричные группы (л)	
$\S2.8.5.$ Группы и алгебры Ли*	409
2.8.5.1. Матричные представления групп и алгебр Ли	
2.8.5.2. Описания симметрий с помощью групп и алгебр Ли 4	414
§ 2.8.6. Группы Лоренца, Пуанкаре и их подгруппы	
§ 2.8.7. Группа Лоренца и электромагнитное поле	
$\S2.8.8$. Решения задач 22—28	
§ 2.8.9. Геометрический смысл прецессии Томаса	
§ 2.8.10. Геометрия Лобачевского и сферическая геометрия \dots 4	
2.8.10.1. Модель Клейна и пространство скоростей СТО 4	
2.8.10.2. Модель Пуанкаре	444
Глава 2.9. Время как координата и энергия как импульс в гамильтоно-	
вом формализме*	1 50
§ 2.9.1. Гамильтонов формализм в расширенном фазовом	450
пространстве	
§ 2.9.3. Канонические преобразования, зависящие от времени	
2.9.3.1. Канонические преобразования, не зависящие от времени	
2.9.3.2. Время как координата и энергия как импульс	
2.9.3.3. Канонические преобразования, не меняющие время	
2.3.3.3. Канонические преооразования, не меняющие время	133
Глава 2.10. Релятивистская частица в СТО и ОТО	458
§ 2.10.1. Решение задачи 31	458
§ 2.10.2. Расширенное гамильтоново описание релятивистской частицы4	463
§ 2.10.3. Частица в криволинейных координатах и в общей теории	
относительности	464
§ 2.10.4. Частица в криволинейных координатах и в общей теории	
относительности -2	466
§ 2.10.5. Частица в поле Шварцшильда	468
2.10.5.1. Симметрии и законы сохранения в поле Шварцшильда	
2.10.5.2. Прецессия перигелия Меркурия	471
Глава 2.11. Антисимметричные тензоры*	475
§ 2.11.1. Электромагнитное поле и симплектическая структура 4	
§ 2.11.2. Ковекторы, дифференциалы и дифференциальные формы** . 4	

Глава 2.12. Интегрирование антисимметричных тензоров*	
§ 2.12.1. ∇ и \triangle через $*$ и d	
§ 2.12.2. Интегрирование по поверхностям разных размерностей	
§ 2.12.3. Теорема Стокса для дифференциальных форм	486
Глава 2.13. Ньютоновская механика как предельный случай СТО § 2.13.1. Классическая потенциальная энергия и макроскопические	489
силы из СТО	489
§ 2.13.2. Обобщение теоремы Нётер	491
Глава 2.14. Неинерциальные системы отсчёта в СТО и ОТО	495
§ 2.14.1. Неинерциальные системы отсчёта в СТО	495
2.14.1.1. Ускорение протяжённого тела	495
2.14.1.2. Полярные координаты на плоскости Минковского	499
§ 2.14.2. Движение медленной частицы в метрике, близкой к метрике	
Минковского	501
Глава 2.15. Гироскоп	
§ 2.15.1. Решение задачи 37	504
$\S~2.15.2.~$ Электромагнитная аналогия для симметрического волчка	509
Предметный указатель	512
Том 2	
Элементы теории колебаний и электродинамика	
Часть 3. Основной материал	
Глава 3.1. Уравнение Гамильтона—Якоби*	551
§ 3.1.1. Вывод уравнения Гамильтона—Якоби	
§ 3.1.2. Зачем нужно уравнение Гамильтона—Якоби*	553
§ 3.1.3. Что делать с решением уравнения Гамильтона—Якоби*	554
§ 3.1.4. Решение уравнения Гамильтона—Якоби методом разделения	
переменных*	556
§ 3.1.5. Задачи 38, 39	
у э. г. э. адачи эо, ээ	558
§ 3.1.6. Пробная частица в поле двух неподвижных точечных масс** .	
§ 3.1.6. Пробная частица в поле двух неподвижных точечных масс** . Глава 3.2. Адиабатические инварианты	559 563
§ 3.1.6. Пробная частица в поле двух неподвижных точечных масс** Глава 3.2. Адиабатические инварианты	559563563
§ 3.1.6. Пробная частица в поле двух неподвижных точечных масс** Глава 3.2. Адиабатические инварианты § 3.2.1. Что такое адиабатические инварианты § 3.2.2. Интегрируемые системы**	559 563 563 564
§ 3.1.6. Пробная частица в поле двух неподвижных точечных масс** Глава 3.2. Адиабатические инварианты § 3.2.1. Что такое адиабатические инварианты § 3.2.2. Интегрируемые системы** § 3.2.3. Переменные действие-угол**	559 563 563 564 566
§ 3.1.6. Пробная частица в поле двух неподвижных точечных масс** Глава 3.2. Адиабатические инварианты § 3.2.1. Что такое адиабатические инварианты § 3.2.2. Интегрируемые системы** § 3.2.3. Переменные действие-угол** § 3.2.4. Примеры	559 563 564 566 568
§ 3.1.6. Пробная частица в поле двух неподвижных точечных масс** Глава 3.2. Адиабатические инварианты § 3.2.1. Что такое адиабатические инварианты § 3.2.2. Интегрируемые системы** § 3.2.3. Переменные действие-угол**	559 563 564 566 568

Глава 3.3. Одномерные малые колебания	574
§ 3.3.1. Свободные колебания	574
§ 3.3.2. Вынужденные колебания	
3.3.2.1. Вынужденные колебания и собственные частоты**	579
3.3.2.2. Функция Грина для осциллятора**	580
§ 3.3.3. Параметрический резонанс*	581
3.3.3.1. Параметрический резонанс с трением**	585
3.3.3.2. Параметрический резонанс и спектральная задача*** .	
§ 3.3.4. Задачи 43—46	587
Глава 3.4. Сложные линейные колебания	589
§ 3.4.1. Линеаризация системы	
§ 3.4.2. Собственные колебания	
§ 3.4.3. Диссипативная функция Релея**	
§ 3.4.4. Собственные колебания с диссипацией и гироскопическими	
силами**	596
§ 3.4.5. Задача 47	598
Глава 3.5. Нелинейные колебания	
§ 3.5.1. Вырожденность одномерного случая	
§ 3.5.2. Зависимость частоты от амплитуды одномерных колебаний	601
3.5.2.1. Линейная по возмущению поправка к периоду осцилля-	
тора*	603
3.5.2.2. Квадратичная по возмущению поправка к периоду ос-	CO 4
циллятора**	
§ 3.5.3. Одномерный нелинейный резонанс	
§ 3.5.4. Теория возмущений	
§ 3.5.5. Нелинейный резонанс	
§ 3.5.6. Задачи 48, 49	610
Глава 3.6. Поле как механическая система	611
§ 3.6.1. Пример: цепочка осцилляторов*	
§ 3.6.2. Решение одномерного волнового уравнения (л)	
§ 3.6.3. Полевое действие в сравнении с механическим	
3.6.3.1. Точка пространства как номер степени свободы	
3.6.3.2. Пространство-время как «многомерное время»	
§ 3.6.4. Полевые уравнения Эйлера—Лагранжа	619
§ 3.6.5. Энергия и импульс поля	
3.6.5.1. Сохранение электрического заряда	
3.6.5.2. Сохранение энергии-импульса	
3.6.5.3. Тонкости с энергией и импульсом поля (!)	
§ 3.6.6. Задача 50	623

Глава 3.7. Описание электромагнитного поля	626
§ 3.7.1. Кинематика электромагнитного поля	626
§ 3.7.2. 4-мерная плотность электрического тока	628
§ 3.7.3. Действие для электромагнитного поля	
§ 3.7.4. Вторая пара уравнений Максвелла	
§ 3.7.5. Тензор энергии-импульса электромагнитного поля	
3.7.5.1. Симметризация тензора энергии-импульса	634
3.7.5.2. Компоненты и силовые линии	
§ 3.7.6. Картины силовых линий и их физический смысл	
§ 3.7.7. Задача 51	641
Глава 3.8. Волновое уравнение для электромагнитного поля	642
§ 3.8.1. Уравнения поля через потенциалы	
§ 3.8.2. Калибровка Лоренца	
§ 3.8.3. Калибровка Кулона*	
§ 3.8.4. Уравнение Пуассона	
§ 3.8.5. Волновое уравнение	649
Глава 3.9. Электро- и магнитостатика	
§ 3.9.1. Электростатическая энергия	
3.9.1.1. Проблема точечного заряда	
3.9.1.2. Границы применимости классической электродинамики	
§ 3.9.2. Разложение кулоновского потенциала	
§ 3.9.3. Электрические мультипольные моменты	
3.9.3.1. Мультипольное разложение потенциала	
3.9.3.2. Мультипольное разложение энергии	
§ 3.9.4. Магнитный дипольный момент	
§ 3.9.5. Поля диполей	
§ 3.9.6. Задачи 52—55	
§ 3.9.7. Ответ к задаче 52	665
Глава 3.10. Свободное электромагнитное поле	
§ 3.10.1. 4-мерное преобразование Фурье*	
§ 3.10.2. Решение уравнения свободного электромагнитного поля *	
§ 3.10.3. Плоская монохроматическая волна	
§ 3.10.4. Плоская волна произвольной формы*	
§ 3.10.5. Поляризация	
3.10.5.1. Вектор поляризации	
3.10.5.2. Тензор поляризации *	
§ 3.10.6. Стоячая монохроматическая волна*	677
Глава 3.11. Собственные колебания электромагнитного поля	
§ 3.11.1. Разложение по бегушим волнам	680

§ 3.11.2. Резонаторы и волноводы (ф)	83
Глава 3.12. Излучение в мультипольном приближении 6	84
§ 3.12.1. Волновая зона	
§ 3.12.2. Мультипольное разложение для потенциала в волновой зоне 6	
§ 3.12.3. Поля в волновой зоне и поляризация	
§ 3.12.4. Интенсивность излучения	
§ 3.12.5. Задачи 56—60	
Глава 3.13. Реакция излучения и излучение релятивистских частиц . 6	93
§ 3.13.1. Радиационное трение	
3.13.1.1. Интенсивность излучения в нуле и на бесконечности . 6	
3.13.1.2. Проблемы с радиационным трением 6	
3.13.1.3. Радиационное трение как возмущение 6	
§ 3.13.2. Интенсивность излучения релятивистских частиц 6	
§ 3.13.3. Преобразование частот и углового распределения 6	
§ 3.13.4. Задачи 61, 62	
Глава 3.14. Рассеяние	02
§ 3.14.1. Понятие о сечениях рассеяния и поглощения	02
3.14.1.1. Рассеяние и поглощение частиц	
3.14.1.2. Рассеяние и поглощение волн	
§ 3.14.2. Постановка задачи рассеяния в электродинамике 7	
§ 3.14.3. Рассеяние электромагнитной волны на осцилляторе 7	
3.14.3.1. Рассеяние и радиационное трение 7	
§ 3.14.4. Задачи 63—65	
Глава 3.15. Электродинамика в среде и единицы измерения в электро-	
динамике	12
§ 3.15.1. Параметризация связанных источников 7	13
§ 3.15.2. Усреднение (сглаживание) полей и источников 7	15
§ 3.15.3. Смысл векторных полей P и M	17
3.15.3.1. Как обычно определяют поля Р и М? 7	18
§ 3.15.4. Системы единиц измерения в электродинамике	20
3.15.4.1. Спор длиной в полтора века	21
3.15.4.2. Критика СИ	23
3.15.4.3. Какая система единиц нам нужна? 7.	24
3.15.4.4. Физико-техническая система единиц	26
3.15.4.5. Система СИ в электродинамике	29
3.15.4.6. Смысл постоянной Кулона	30
3.15.4.7. Понятие о системе систем единиц измерения 7	31
Литература к главе 3.15	32

Решения и дополнения

Часть 4. Дополнительный материал

Глава 4.1. Уравнение Гамильтона—Якоби и канонические преобразова	-
кин	
§ 4.1.1. Решение задачи 38	739
\S 4.1.2. Производящие функции канонических преобразований	745
4.1.2.1. Действие порождает каноническое преобразование	745
4.1.2.2. Зависимость производящих функций от времени	747
4.1.2.3. Производящие функции от разных наборов аргументов.	748
4.1.2.4. Важные примеры	752
§ 4.1.3. Канонические замены координат как калибровочные преоб-	
разования в связи с производящими функциями	754
§ 4.1.4. Дальнейшее чтение	756
Глава 4.2. Адиабатические инварианты	757
§ 4.2.1. Решения и обсуждение задач 40—42	757
Глава 4.3. Одномерные малые колебания и линейные дифференциаль	
ные уравнения	
§ 4.3.1. Решения задач 45, 46	
§ 4.3.2. Линейные дифференциальные уравнения** (л)	774
4.3.2.1. Как решать линейные однородные дифференциальные	
уравнения * (л)	
4.3.2.2. Как решать линейные неоднородные уравнения (л)	
4.3.2.3. Функциональное пространство L_2^* (л)	
4.3.2.4. Обобщённые функции* (л)	
4.3.2.5. Преобразование Фурье (л)	781
4.3.2.6. Решение неоднородных уравнений	
с фурье-гармоникой* (л)	
4.3.2.7. Функции Грина* (л)	784
Глава 4.4. Сложные линейные колебания и преобразования Фурье	
§ 4.4.1. Решение задачи 47	
§ 4.4.2. Преобразование Фурье на решётке, отрезке, прямой	796
4.4.2.1. Унитарное пространство	796
4.4.2.2. Собственные числа и векторы циклического сдвига	798
4.4.2.3. Преобразование Фурье на решётке	801
4.4.2.4. Прямая и обратная решётки	802
4.4.2.5. Переопределение скалярного произведения на коорди-	
натной решётке	
4.4.2.6. Предельный переход к рядам Фурье	805

4.4.2.7. Переопределение скалярного произведения на обрат-	
ной решётке	807
4.4.2.8. Предельный переход к преобразованию Фурье	808
4.4.2.9. Коэффициенты в преобразованиях Фурье	809
§ 4.4.3. Комплексные координаты и амплитуды	810
§ 4.4.4. Уравнение Шрёдингера как описание системы гармонических	
осцилляторов $ ightarrow$	812
Глава 4.5. Нелинейные колебания	813
§ 4.5.1. Решения задач 48, 49	813
Глава 4.6. Поле как механическая система	818
§ 4.6.1. Теорема Нётер в теории поля	818
\S 4.6.2. Альтернативное определение тензора энергии-импульса	820
§ 4.6.3. Согласованность определений тензора энергии-импульса для	
скалярных полей	821
Глава 4.7. Свойства уравнений Максвелла	824
§ 4.7.1. Совместность уравнений Максвелла	824
§ 4.7.2. Уравнения Максвелла с магнитными зарядами	825
§ 4.7.3. Уравнения Максвелла в комплексной форме	827
4.7.3.1. Зарядовое вращение	828
§ 4.7.4. Кинематика и динамика меняются местами	828
4.7.4.1. Альтернативная параметризация электромагнитного	
поля	829
4.7.4.2. Дуальное действие	830
4.7.4.3. Дуальные калибровочные преобразования	831
Глава 4.8. Запаздывающая функция Грина для волнового уравнения .	833
Глава 4.9. Электро- и магнитостатика	835
§ 4.9.1. Решения задач 53, 54	
§ 4.9.2. Энергия магнитостатического поля	839
§ 4.9.3. Поля диполей в нуле	842
4.9.3.1. Сверхпроводящая сфера в однородном электрическом	
поле	
4.9.3.2. Сверхпроводящая сфера в однородном магнитном поле	843
§ 4.9.4. Точечные электрические мультиполи	
4.9.4.1. Плотность заряда в точечном мультиполе	
4.9.4.2. Ток в точечном мультиполе	846
§ 4.9.5. Точечные магнитные мультиполи	846
§ 4.9.6. Сферические функции и полиномы Лежандра	847

Глава 4.10. Поляризация и квантовая механика	. 850
§ 4.10.1. Вектор поляризации	
4.10.1.1. Унитарная эволюция	
4.10.1.2. Базисы и проекторы	. 853
4.10.1.3. Поляризаторы с комплексными осями*	
4.10.1.4. Тензор поляризации*	. 857
§ 4.10.2. Поляризация отдельного фотона**	. 859
4.10.2.1. Чистые состояния	
4.10.2.2. Смешанные состояния***	. 861
Глава 4.11. Собственные колебания электромагнитного поля	
§ 4.11.1. Собственные функции оператора Лапласа и собственные ко-	
лебания	
§ 4.11.2. Разложение поля в ящике на стоячие волны	. 865
Глава 4.12. Излучение в мультипольном приближении	. 869
§ 4.12.1. Решения задач 56, 58, 59	
Глава 4.13. Реакция излучения и излучение релятивистских частиц	
§ 4.13.1. Радиационное трение релятивистских частиц	
§ 4.13.2. Потенциалы Лиенара—Вихерта	
§ 4.13.3. Преобразование частот и углового распределения	. 877
Глава 4.14. Рассеяние	
§ 4.14.1. Решения задач 63, 64	. 880
Глава 4.15. Электродинамика в среде	. 884
§ 4.15.1. Неоднозначность полей D и H	
§ 4.15.2. Откуда берётся неоднозначность полей P и M ?	. 885
§ 4.15.3. Поля D и H и действие	. 887
§ 4.15.4. Эффект Вавилова—Черенкова	. 888
4.15.4.1. Если бы у нас была сверхсветовая частица	. 888
4.15.4.2. Черенковское излучение при движении частицы	
в среде	. 890
4.15.4.3. Черенковское излучение на границе двух сред	. 891
Часть 5. Механика классическая и квантовая	
как классическая теория поля	
Глава 5.1. Действие через множитель Лагранжа	. 895
Глава 5.2. Классическая механика как вероятностная теория	. 897
§ 5.2.1. Идеальное классическое измерение	. 900
SECO TRANSPORTED TO THE TRANSPORTED	വാ

§ 5.2.3. Действие для уравнения Лиувилля 90 § 5.2.4. Представление Гамильтона 90 § 5.2.5. Представление взаимодействия 90)5
Глава 5.3. Переход к квантовой механике 90 § 5.3.1. Квантовые наблюдаемые и квантовые состояния 90 § 5.3.2. Идеальное квантовое измерение 91 § 5.3.3. Действие для квантового уравнения Лиувилля 91 § 5.3.4. Представление Шрёдингера 91 § 5.3.5. Представление Гайзенберга 91 § 5.3.6. Представление взаимодействия 91 § 5.3.7. Каноническое квантование 92)9 12 15 16 17
Глава 5.4. Уравнение Гамильтона—Якоби как описание ансамбля невза- имодействующих систем	
Глава 5.5. Квантовый аналог уравнения Гамильтона—Якоби 92 § 5.5.1. Предел малой ћ 92 § 5.5.2. Квантовые поправки 92 § 5.5.3. Функционал Гамильтона 93 § 5.5.4. Функционалы наблюдаемых и скобка Пуассона 93 § 5.5.5. Функционал Гамильтона для частицы в потенциале 93 § 5.5.6. Действие для уравнения Шрёдингера 93	27 29 30 32 33
Глава 5.6. Уравнение Шрёдингера как описание системы гармонических осцилляторов 93 § 5.6.1. От уравнения Шрёдингера к системе осцилляторов 93 § 5.6.2. Функция Гамильтона системы осцилляторов 93 § 5.6.3. Скалярное произведение 94	38 39 41
Предметный указатель	14