понедельник — с 12:00 до 19:00;
вторник-пятница — с 10:00 до 19:00;
суббота — с 11:00 до 18:00
понедельник — с 12:00 до 19:00;
вторник-пятница — с 10:00 до 19:00;
суббота — с 11:00 до 18:00
В книге излагаются основные (начальные) разделы теории сложности алгоритмов. Различаются алгебраическая и битовая сложности, каждая из которых рассматривается в худшем случае и в среднем. Ряд основных понятий теории сложности, как-то: оценки снизу и сверху, нижняя граница сложности алгоритмов некоторого класса, оптимальный алгоритм и т. д., рассматривается не только в обычном функциональном, но и в асимптотическом смысле: асимптотические оценки, асимптотическая нижняя граница, оптимальность по порядку сложности и т. д. Показывается, что при исследовании существования алгоритма решения задачи, имеющего «не очень высокую» сложность, важную роль может играть сводимость одной задачи к другой.
Изложение сопровождается анализом сложности большого числа алгоритмов арифметики, сортировки и поиска, вычислительной геометрии, теории графов и др.
Для студентов, специализирующихся в области математики и информатики.
Предыдущее издание книги вышло в 2012 г.
В книге излагаются основные (начальные) разделы теории сложности алгоритмов. Сложности рассматриваются в худшем случае и в среднем. Ряд основных понятий теории сложности, как-то: оценки снизу и сверху, нижняя граница сложности алгоритмов некоторого класса, оптимальный алгоритм и т. д., рассматривается не только в обычном функциональном, но и в асимптотическом смысле: асимптотические оценки, асимптотическая нижняя граница, оптимальность по порядку сложности и т. д. Показывается, что при исследовании существования алгоритма решения задачи, имеющего «не очень высокую» сложность, важную роль может играть сводимость одной задачи к другой.
Изложение сопровождается анализом сложности ряда алгоритмов арифметики, сортировки и поиска, вычислительной геометрии, теории графов и др.
Для студентов, специализирующихся в области математики и информатики.