Устойчивость и локализация в хаотической динамике
Автор: | |
Название: | Устойчивость и локализация в хаотической динамике |
Издательство: | МЦНМО | ISBN: | 5-900916-67-7 |
Год издания: | 2001 | Тираж: | 1000 экз. |
Количество страниц: | 352 стр. | Формат: | 145x220x18 |
Эргодическая теория динамических систем — область математики, интенсивно развивающаяся в последние десятилетия и находящая многочисленные приложения в различных разделах физики, техники, биологии и других наук. В монографии дается систематическое изложение операторного подхода в теории хаотических динамических систем, основанного на анализе спектральных свойств оператора Перрона-Фробениуса, описывающего динамику плотностей мер под действием динамической системы. Одним из центральных вопросов здесь является вопрос об устойчивости относительно малых случайных (квазислучайных) возмущений статистических характеристик динамики. Противоположной ситуацией, связанной с крайней неустойчивостью динамической системы, является явление локализации, которое в монографии прослеживается для самых разных характеристик, начиная со стабилизации сингулярных инвариантных мер и кончая спектральной локализацией. Подробно изучены также вопросы численного моделирования хаотической динамики, в частности, аппроксимация динамики при помощи конечных марковских цепей по методу Улама.
Для студентов, аспирантов и научных работников в области математики и математической физики.